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1. Introduction 
 
   This lecture note introduces the basis of finite-difference method (FDM) for solving 
three-dimensional incompressible Navier-Stokes equations. Contents in this note are based on my 
lecture, ‘Computational Fluid Dynamics (CFD)’ at 6 semester of undergraduate school.  

As in Fig.1, applied mathematician started CFD researches before 1950. The main stream in 
1950 was to develop time-marching methods for solving compressible Euler equations. 
Unfortunately, such methods could not solve incompressible Navier-Stokes equations at that time. 
Because the continuity equation has no time derivative due to no density variation, the 
time-marching method is not applicable to the continuity equation. In 1965, Harlow and Welch [1] 
proposed a finite-difference method named Marker and Cell (MAC) method for solving 
incompressible Navier-Stokes equations. Until today, MAC-based methods are still in common use 
for simulating incompressible viscous flows. This note focuses on the methodology how MAC 
method solves three-dimensional incompressible Navier-Stokes equations.  

First in this note, three-dimensional incompressible Navier-Stokes equations are derived from the 
compressible Navier-Stokes equations. Next, Marker and Cell (MAC) method applied to the equations is 
explained in detail. Further as numerical examples, some three-dimensional incompressible flows simulated 
by MAC-based method coupled with an immersed boundary method are introduced. 
 
 
 

 
 

Fig. 1 Brief history of early CFD researches 
 
 



 

2. Compressible Navier-Stokes Equations 
 

Let me start from Compressible Navier-Stokes equations (CNS) using vector description as follows: 
  0 u t                                  (2-1) 

  Π  pt uuu                              (2-2) 

    quu   peet                        (2-3) 

where  , u , p , Π , e  and q  are the density, velocity vector, pressure, viscous stress tensor, total 

internal energy per unit volume, and the vector of heat flux. t  is the time and the subscription t  means 
the partial derivation with respect to time.  First, second, and third equations are respectively the mass 
conservation law, momentum conservation law, and the energy conservation law. 

These equations can be also rewritten using tensor description: 
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where    zyxxxx ,,,, 321   and    wvuuuu ,,,, 321   for three dimensions in space. For example, 
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where   and ij  are the molecular viscosity and Kronecker’s delta. Second equation Eq. (2-5) is 

composed of three momentum equations along zyx ,,  in three dimensions. 

CNS is not a closed system itself because the pressure p is still unknown. Assuming ideal gas, CNS can 
be closed by the equation of state for ideal gas: 

     2121 iiuueeRTp   uu                (2-8) 

where R  and   are the specific gas constant and specific heat ratio ( 4.1 ). 
   Three-dimensional CNS is written by the following tensor form: 
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where Q , iF  and viF  are the vectors of unknown variables, convection and pressure terms (convection 

flux), and the diffusion terms (diffusion flux). 
 
 
 



 

3. Incompressible Navier-Stokes Equations 
 
   Now let me derive three-dimensional incompressible Navier-Stokes equations from Eq. (2-9). First, as 
the most primary feature for incompressible flows, density is not varied: constantρ  (Note that exactly 

density is varied even if it is liquid). In addition, the internal energy e  is not varied because of no 
compressibility. From these assumptions, Eq. (2-9) results in the following set of equations: 
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Next, let me nondimensionalize Eq. (3-1) with the following non-dimensional variables: 
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The upper bar indicates the non-dimensional variable. L [m] and V [m/s] are the reference values of 

length and velocity. reft  is a reference time derived as  VLtref  and   is the  reference value of 

molecular viscosity coefficient. First equation of Eq. (3-1) corresponds to the continuity equation. The 
time-derivative term was lost because of no density variation. The continuity equation is 
nondimensionalized by the following manner: 
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Second to fourth equations correspond to the momentum equations. These three equations can be written by 
the same equation in a tensor form and the equation is nondimensionalized as follows: 
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Since the Reynolds number is defined by   LVRe , Eq.(3-4) can be rewritten by 
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According to Eq. (3-3) and Eq. (3-5), the set of equations removing the upper bar is summarized as the 

following vector form: 
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  where the viscous stress tensor has the same form with that for CNS as 
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Next let me simplify Eq. (3-7) assuming incompressible flows. First, the molecular viscosity has already 

been nondimensionalized and is to be constant, setting it to one. In Eq. (3-7), the second term at right hand 

side coincides with the continuity equation as 
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Then, the partial derivative of viF  with respect to ix are simplified by the following manner:
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Consequently, ij  results in a simple form:
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Substituting Eq. (3-8) into Eq. (3-6), we obtain a set of fundamental equations for incompressible 

viscous flows written in vector description as follows: 
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We call the set of Eq. (3-9) and Eq. (3-10) incompressible Navier-Stokes equations, or only the momentum 

equations may be called incompressible Navier-Stokes equations. Next shows the expanded forms.   
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・Momentum equations 
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Hereafter, we call the incompressible Navier-Stokes equations, INS.  
 
 
4. Poisson’s Equation of Pressure 

 

CNS has the time derivative term in all equations. As a typical finite-difference method, a 

time-marching method is applied to them for the time integration, whereas the continuity equation Eq. 

(3-10) has no time derivative term. Until today, we have no methods to solve Eq. (3-10) directly. Hallow 

and Welch [1] proposed alternative method to solve Eq. (3-10) indirectly in a Poisson’s equation of pressure. 

Let me introduce the Poisson’s equation in this section. First, the following parameters composing of 

convection terms and viscous terms in Eqs. (3-12) to (3-14) are defined: 
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Using these parameters, the momentum equations Eqs. (3-12) to (3-14) are rewritten as  
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To derive Poisson’s equation of pressure, Eqs. (4-4) to (4-6) are partially differentiated with respect to x , 

y , and z . Then, we obtain the following partial differential equations: 
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Eqs. (4-7) to (4-9) are further added together as 
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Changing the sequence of partial derivation, we obtain the following form: 
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Finally, Poisson’s equation of pressure can be derived as follows: 
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where 
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Eq. (4-13) corresponds the divergence of velocities, resulting in the continuity equation if it equals zero. 



 

5. Marker and Cell (MAC) Method 
 

   Harlow and Welch proposed a numerical method based on finite-difference method (FDM) named 

Marker and Cell (MAC) method. We call it MAC method. The primary points are first to solve the 

momentum equations Eqs. (3-12) to (3-14), and Poisson’s equation of pressure Eq. (4-12) instead of the 

continuity equation Eq. (3-11). The second is to employ a special treatment of computational grid named 

Staggered Grid. Usually unknown variables  , iu , and e  of CNS are defined and computed 

simultaneously at the same grid point. The unknown variables of MAC method are iu  and p . Harlow 

and Welch addressed that pressure was numerically oscillated as high or low value at the neighbor like a 

checkerboard if all the unknown variables are defined at the same grid point. To suppress the numerical 

oscillation, they defined the unknown variables at different grid points. 

   Figure 5-1 defines the grid points for unknown variables u , v , w , and p . Original grid points are 

numbered using the numbers i , j , and k  in  x , y , and z  directions. A three-dimensional cubic 

volume with the eight grid points is defined as a Cell. The Cell number is  kji ,, . kjip ,,  is pressure 

defined at the center of Cell . kjiu ,, , kjiv ,, , and kjiw ,,  are the velocities u , v , and w  defined at the 

center of Cell surface. 

 

Fig. 5-1 Definition of grid points in Cell for staggered grid



According to the staggered grid, FDM is applied to the momentum equations and the Poisson equation of 

pressure. The finite-difference equations are solved at the grid points defined in Fig. 5-1. Hereafter, the 

notation   kji ,,  indicates the finite-difference value of term at each staggered grid point where the 

unknown variables kjiu ,, , kjiv ,, , kjiw ,, , and kjip ,,  are defined. uF , vF , and wF  are differenced at 

 kji ,,  grid points where kjiu ,, , kjiv ,, , and kjiw ,, are defined as follows:  
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To derive the finite-difference forms for terms at right hand side in Eqs. (5-1) to (5-3), unknown variables 

kjiu ,,21 , kjiv ,21,  , and 21,, kjiw  defined at the intermediate grid point between those at kjiu ,,  and 

kjiu ,,1 ; kjiv ,,  and kjiv ,1,  ; kjiw ,,  and 1,, kjiw  are further introduced as in Figs. 5.2, 5.3, and 5.3. 

 

Fig. 5-2 Definition of kjiu ,,21  



 

 

Fig. 5-3 Definition of kjiv ,21,   

 

Fig. 5-4 Definition of 21,, kjiw  

 

  The finite-difference forms for convection terms in Eqs. (5-1) to (5-3) are derived as follows: 
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Numerical accuracy of Eqs. (5-3) to (5-12) is second-order in space. 

   Next the finite-difference forms of second-order space derivatives in Eqs. (5-1) to (5-3) are derived 

assuming second-order accuracy in space as follows: 
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Differencing all the terms in   kjiuF ,, ,   kjivF ,, , and   kjiwF ,,  was completed. The remaining terms are 

the time derivative and the pressure derivatives as in Eqs. (4-4) to (4-6). The pressure derivatives are 

differenced at  kji ,,  grid points where kjiu ,, , kjiv ,, , and kjiw ,, are defined as follows: 
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The finite-difference forms of Eqs. (4-4) to (4-6) are written as 
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Time derivatives of Eqs. (5-25) to (5-27) are differenced with first-order accuracy as follows: 
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where the notation n  at the superscript of unknown variables corresponds to the number of time iteration : 

n  time-step. The variables at n  time-step are known values and the unknown variables at 1n  

time-step are obtained by the time-marching method as 
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Eqs. (5-31) to (5-33) are the final finite-difference forms for the momentum equations of Eqs. (3-11) to 

(3-13). 

   Next the Poisson’s equation of pressure in Eq.(4-12) is differenced at the grid point  kji ,,  where  

kjip ,,  is defined as follows:  
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The terms in left hand side are generally solved by a relaxation method and those in right hand side is 

solved algebraically. Attention to solve Eq. (5-34) is that the first term in right hand side is a time-derivative 

of D  defined as Eq. (4-13) . If this term is differenced in first-order accuracy, then 
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Because unknown variable 1nD  at 1n  time-step is contained in Eq. (5-35), this variable and the terms 

at left hand side in Eq. (5-34) should be solved at the same time. However, the calculation may be almost 

impossible. Harlow and Welch decided that 1nD  is forced to be zero assuming the continuity equation is 

satisfied at 1n  time step as 

01 nD       (5-36) 

Then, Eq. (5-35) was simplified to  
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Eq. (5-37) can be solved algebraically. 

  The second to fourth terms at right hand side in Eq. (5-34) are the space differences of uF , vF , and wF . 

They are obtained by further differences on uF , vF , and wF  as follows: 
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Defining the set of terms at right hand side in Eq. (5.34) to kjif ,,  as 
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Eq. (5-34) is rewritten by 
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The terms in left hand side are differenced in second-order space accuracy as follows: 
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If kjip ,,  is derived from Eq. (5-43), then we obtain the following equation: 
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where      222 222 zyxL  . SOR method can be applied to Eq. (5-44) as 
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where   is the over-relaxation parameter and it sets to a value in 21  . Finally, the finite-difference 

equations Eqs. (5-31) to (5-33) and Eq. (5-45) are solved simultaneously. 

   When incompressible flow problems are solved by MAC method, boundary conditions should be 

carefully treated.  

   Figure 5-5 shows the grid points near the solid wall boundary at 0y . The grid points  ki ,1,  and 

 ki ,1,1  are located on the solid wall boundary. A boundary layer forms on the solid wall boundary in 

incompressible viscous flows. All the velocities u , v , and w  on the solid wall boundary are to be zero. 

As the boundary layer approximation, pressure in the boundary layer is not changed toward normal 

direction from the solid wall boundary: 0 yp . Using staggered grid, only kiv ,1,  can be defined on 

the solid wall boundary at 0y  in Fig. 5-5, setting 0,1, kiv . However, other variables are not defined 

on the boundary. To resolve this concern, a reflecting boundary condition is applied to kiu ,1,  and 

kiw ,1, (not seen in Fig.4-5) to satisfy zero velocity at the solid wall boundary. For example, outer grid point 

 ki ,0,  is further added and kiu ,0,  is set to kiki uu ,1,,0,   Then, the boundary treatment satisfies 0u  

on the boundary. Also kip ,0,  is set to kiki pp ,1,,0,   according to 0 yp . 

 



 

 

Fig. 5-5 Treatment of boundary conditions 

 

 

6. Fractional Step Method and SMAC Method 

    

   Eqs. (5-31) to (5-33) and Eq. (5-45) are written again in the vector description as 
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MAC method solves Eq. (6-1) by the time-marching method and Eq. (6-2) by a relaxation method. As 

typical methods modifying MAC method, the fractional step method [2] and SMAC (Simplified MAC) 

method [3] are well known. In this section, these methods are further applied to Eqs. (6-1) and (6-2). 

   The finite difference forms of Eqs. (6-1) and (6-2) are obtained as follows: 
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The fractional step method divides Eq. (6-3) to two equations. Resultantly Eq. (6-4) can be simplified as 
nn t Fuu            (6-5) 

tpn   u12          (6-6) 
11   nn ptuu           (6-7) 

u  is the intermediate value in time between nu  and 1nu . The distinguished point for the fractional step 

method is the simplification of Poisson’s equation of pressure. All the space derivatives of convection and 

viscous terms at right hand side in Eq. (6-4) are omitted.  

   SMAC method is further applied to Eqs. (6-5) to (6-7). Then, the following four-step equations are 

obtained: 



 

 nnnn pt  Fuu 1        (6-8) 

tn   u12            (6-9) 
11   nn t uu           (6-10) 

11   nnn pp          (6-11) 

Eq. (6-8) forms rather the same equation with Eq. (6-3). A parameter   is further introduced. 1n is defined by 
nnn pp   11  as in Eq. (6-11) and Poisson’s equation of   is solved instead of that of pressure. 

Generally, the boundary conditions for pressure itself (Direchlet’s boundary condition) or the derivative of 

pressure (Neumann’s boundary condition) should be specified when Eq. (6-6) is solved, while all the 

boundary conditions can be specified to zero for both Direchlet’s and Neumann’s boundary conditions when 

Eq. (6-9) is solved, simplifying the boundary treatment for the Poisson’s equation.  

 

7. Immersed Boundary Method 

 

Peskin [4] proposed the immersed boundary(IB) method for simulating blood flows in a heart. In the IB 

method, Cartesian grid is employed for the calculation of flow field. The geometry of the heart is immersed 

in the Cartesian grid and the effect of the immersed boundary is imposed to the fundamental equations as a 

source term. Clarke et al. [5] developed a similar method for inviscid flows using the Cartesian grid. 

Udaykumar et al. [6] extended this method to unsteady viscous flows. Mittal and Iaccarino [7] surveyed 

these methods and all of them were redefined as the IB method.  

This lecture note introduces an IB method developed by us [8]. A primary advantage of this method is 

its simplicity as compared with the existing IB methods. 

IB methods are categorized to two approaches. One is Feedback Forcing Method and another is Direct 

Forcing Method. IB method here is based on the Direct Forcing method.  

First, external force G is added to Eqs. (4-4) to (4-6) for installing IB method into INS as 
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The time-marching method is applied to Eqs. (7-1) to (7-3) and the set of equations is written in the 

following vector form: 
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The external force G is defined by 

t
p

nIB
nnn





uu

FG           (7-5) 

where IBu  is the corrected velocity vector obtained by IB method. This process means 1nu  is forcibly 

replaced by IBu .  In this section, applying the IB method to SMAC method is main issue. Let me briefly 



 

explain how IBu  is calculated by our IB method. The IB method here employs a simple interpolation for 

obtaining IBu . Fig. 7-1 shows the velocities and pressure near the solid body. Red surface is a part of solid 

body which cuts the cubic composed of eight black points. The surface moves at su velocity. kjiu ,,  is 

calculated by the linear interpolation between kjiu ,,1  and the velocity element of su  in x  direction 

and IB
kjiu ,,  is stored for calculating the external force xG . IB

kjiv ,,  and IB
kjiw ,,  are obtained by the same 

manner. 

 

 

Fig. 7-1 Interpolation of IBu along x -direction 

 

 

8. Numerical Examples 

 

We simulated incompressible viscous flows over a sphere using our IB method. Fig. 8.1 shows the 

computational grid for flow field and the surface mesh for the sphere. The surface mesh was immersed in 

the computational grid region. The computational grid region has 10D × 7.5D × 7.5 D volumes, where D is 

the diameter of sphere. A uniform flow was set at the inlet and the other boundaries were determined by the 

Sommerfeld’s radiation condition. Grid dependency was checked by using different four computational 

grids as shown in Table 8.1. 

Figure 8-2 plots the obtained vortex separation lengths after sphere compared with the existing 

numerical and experimental values by Taneda[9]，Tomboulides[10]，Magnaudet[11]，and Johnson[12]. 

According to the increment of grid points, obtained results approached the existing results. The results using 

Grid3 and Grid4 coincided with each other. Hereafter the results obtained by Grid4 is employed for the 

discussion.  



 

 

Table 8.1  Properties of computational grids 

 Grid1 Grid2 Grid3 Grid4 

Number of grid points 62x53x53 92x81x81 121x109x109 151x147x147 

Minimum of grid space 

(Δx = Δy = Δz) 
0.1 D 0.05 D 0.025 D 0.02 D 

 

Table 8.2 shows the obtained drag and lift coefficients: CD and CL. Kim [13] and Fornberg [14] obtained 

CD=1.087 and CD=1.085 at Re=100. Our results were almost coincided to those values. 

 

Table 8.2  Drag and lift coefficients 

Re CD CL 

50 1.575 1.27×10-2 

100 1.086 5.20×10-3 

150 0.879 2.23×10-3 

 

Figures 8.3 to 8.5 show 2D streamlines on xy  plane and 3D streamlines behind sphere for Re= 50, 100, 

and 150. The length of twin vortices observed at xy  plane is larger in the case of larger Reynolds number. 

All cases represent a doughnut shaped vortex after the sphere and the size became larger in the case of 

larger Reynolds number 

 

    

 

(a) Perspective view                           (b) Local view 

Fig. 8-1 Computational grid over a sphere 
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Fig. 8-2 Numerical and experimental results of vortex separation length 

 

 

(a) 2D streamlines on xy plane            (b) 3D streamlines behind sphere  

Fig. 8-3 Calculated streamlines at Re=50 

 

 
(a) 2D streamlines on xy plane            (b) 3D streamlines behind sphere  

Fig. 8-4 Calculated streamlines at Re=100 

 



 

 
 

(a) 2D streamlines on xy plane            (b) 3D streamlines behind sphere  

Fig. 8-5 Calculated streamlines at Re=150 

 

The IB method is applicable to incompressible viscous flow problems over more a complicated solid 

body. Let me briefly introduce some results of the flows over a complex solid body where our IB method 

was applied.  

We simulated incompressible viscous flows over deformed spheres with a tunnel hole and a cylindrical 

projection. The flow conditions are equivalent to those of Re=100 for the previous case.  

Figures 8-6 shows the surface meshes of the deformed spheres immersed in the computational grid. 

These surfaces are overall covered by triangle meshes. Figs. 7-7 and 7-8 show 2D streamlines on xy  plane 

and 3D streamlines behind the deformed spheres. Vortex structures in Figs. 8-7 and 8-8 are obviously 

different from those in Fig. 8-4.  

We further simulated a number of complex problems privately. Before the end of this lecture, some 

typical cases are briefly introduced. One is incompressible viscous flows over a rotating fan. Fig. 8-9 shows 

the fan shape and the computational grid with the immersed fan surface. Fig. 8-10 shows instantaneous 

u velocities on xy plane at a different time behind the rotating fan. The velocity distributions have a 

periodical velocity profile due to the rotation of fan. High and low velocity regions form periodically after 

the rotor fan. Finally, applications to two interesting problems and the obtained streamlines are introduced 

in Fig. 8-11. The shapes are based on free 3D frames downloaded from web pages. Even though the 

Reynolds number may be low, steam lines and the pressure on the body could be captured by our IB method. 

Note that IB methods may be applicable to lower Reynolds number flows. Further innovative ideas should 

be necessary for IB methods to simulate higher Reynolds number flows. 

 



 

 

(a)  With a tunnel hole              (b) With a cylindrical projection 

Fig. 8-6 Complex surface meshes for a sphere 

 

 

 

(a) 2D streamlines on xy plane            (b) 3D streamlines behind sphere 

Fig. 8-7 Calculated streamlines at Re=100 

 

 

(a) 2D streamlines on xy plane            (b) 3D streamlines behind sphere 

Fig. 8-8 Calculated streamlines at Re=100 

 



 

 

          
(a) Shape of rotor fan               (b) Rotor fan surface immersed in the computational grid 

Fig. 8-9 Rotor fan and computational grid 

 

 

Fig. 8-10 Instantaneous u velocities on xy plane at a different time behind the rotating fan. 

 

 

 



 

 

Fig. 8-11 Applications to practical 3D shapes and the obtained streamlines. 

 

 

9. Concluding Remarks 

   This lecture note introduced three-dimensional incompressible CFD based on MAC method. 

MAC-based methods are still in common use for simulating incompressible viscous flows. This lecture note 

focused on the three-dimensional methodology to understand the basis of three-dimensional fundamental 

equations and the three-dimensional method. It would be helpful for readers who start CFD for simulating 

three-dimensional incompressible flow problems.  
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