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1．Introduction 

Mathematical Modeling and Computation that is the title of this lecture note is a research 

field mathematically modeling physics in natural science, events in social science, and 

computing these mathematical models. This field has been studied by applied mathematicians, 

scientists, and engineers. Originally Mathematical Science is the research field for studying 

mathematical models. We know some subdivided fields in the Mathematical Science such as 

Mathematical Physics, Mathematical Biology, Mathematical Sociology, Mathematical 

Economics, Mathematical Psychology, and so on. Especially, the Mathematical Biology is a 

typical research field proposing well-known mathematical models. Hodgkin-Huxley model [1] 

is a famous model of physiology which can simulates a pulsative signal of ion going in and out 

nerve membrane. Hodgkin and Huxley got the Nobel Prize of Physiology and Medicine in 1963 

by the achievement of this study. This model was further extended by FitzHugh and Nagumo as 

FitzHugh-Nagumo model [2]. Kermack-McKendrick model [3]-[5] is known as the model of 

Immunology simulating infectious diseases. This is also called SIR model named from the first 

letter of three words: Susceptible, Infectious and Recovered. Lotka-Volterra model [6] is a 

model of Ecology simulating a competition system such as pray-predator system among fungi, 

plant, insect, animal, and human. This model is also applied to problems in resource-consumer 

system. Lotka-Volterra model can be reduced to a system of logistic equations simulating 

population movements. Also in Economy, Black-Scholes equation has been employed to predict 

the stock market quotations. Currently traffic jam, internet traffic, fashion, rumor, … are being 

predicted by their own models or Artificial Intelligence (AI) using their big data. As more 

famous mathematical models, Maxwell’s equations, Schroedinger's equation, and Navier-Stokes 

equations are the most complete and complex models for electro magnetics, quantum mechanics, 

and fluid mechanics in physics.  

In this lecture note, the basic of mathematical modeling and the computation is introduced. 

The mathematical model is based on a partial or ordinary differential equation, or the set of 

equations. The models are computed by a finite-difference method. A macro program using an 

Excel sheet for simulating 2D problems and Fortran programs simulating 3D problems which 

can be downloaded from the Web page are introduced to assist the lecture.  

  



4 

 

2．Entrance of Mathematical Modeling and Computation 

 

2.1 Reaction Equation 

Differentiating te results in te . If teu  , then teu   and uu 
( udtdu  ). This equation is called ‘Ordinary Differential Equation (ODE)’. The differential 

term dtdu is called ‘Derivative function’ of unknown variable u  with respect to time t . 

Finite Difference Method (FDM) is a numerical method which is widely employed as the 

basis of the mathematical modeling and computation. 

   Now let’s solve udtdu  using FDM. Then we can make the following approximated 

equation: 

  n
nn

u
t

uu



1

                               (2.1) 

where t  is the time interval and n  is the time-step (not exponentiation) in time direction

（the detail is explained in later）. The unknown variable u at n  time-step is defined as nu .  

 Reforming Eq. (2.1), we obtain 
nnn utuu  1                                (2.2) 

This equation is equivalent to an assignment statement in computer programs for updating nu  

to 1nu  by increasing n  as 1,2,3, ・ ・ ・ . For example, if 0t  and 1u  at 0n ; 

1.0t , then we can obtain the following results for u . 

 

Fig.2.1 Calculated results of u compared with the exact solution te . 
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While increasing in the number of n , u  asymptotically approaches zero. The right figure in 

Fig. 2.1 indicates that the value of u  is almost the same with te , because an exact solution of 

u  is te . FDM solution can approximate the value. 

udtdu  as ODE is alternatively called ‘Reaction Equation’. Reaction means the 

chemical reaction.  Assuming u  as a chemical species, u  approaching zero indicates that 

the species u  changes to another species. The left- and right-hand sides of reaction equations 

are respectively called ‘Time-derivative Term’ and ‘Reaction Term’. 

 On the other hand, if udtdu  , then an exact solution is te . While increasing in the 

number of n , u  increases exponentially. Such a chemical reaction or an infectious disease 

may be unrealistic.  

 

2-2 System of Reaction Equations 

Let’s solve two reaction equations simultaneously to simulate a chemical reaction between 

two species. If the densities are defined by u and v, we can derive the following system of 

reaction equations: 

uv
dt

dv

vu
dt

du




                                   (2.3) 

 

Using FDM,  

nnnn

nnnn

vutvv

uvtuu

 

 
1

1








                              (2.4) 

 

If 99.0u  and 01.0v  at 0t  as initial conditions; 5.0t , then the FDM solutions 

are obtained as  
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Fig. 2.2 Time-dependent solutions for u  and v . 

 

When n = 18, the values of u and v are almost reversed from the initial values. These values 

further asymptotically reach u = 0 and v = 1 while increasing in the number of n. Such a 

relationship may be also observed in a lot of physics and social events where some things 

change to some others.  

As a well-known mathematical model based on three reaction equations, a transmission 

model of infection, is briefly introduced here. This model was proposed by Kermack and 

McKendrick [1] - [3] as the following three equations: 

)( 
)(

)()( )( 
)(

)()( 
)(

tI
dt

tdR

tItStI
dt

tdI

tItS
dt

tdS













                         (2.5) 

where )(tS  is the density of population under susceptible condition. )(tI  is the density of 

population under infectious condition. )(tR  is the density of population under recovered, 

removed or immune condition.   is the transmission rate from susceptible condition to 

infectious condition and   is the recovered rate; both are empirical constants. The total 

population )()()()( tRtItStN   is constant and the above equations derives 

0
)()()(


dt

tdR

dt

tdI

dt

tdS
                          (2.6) 
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This model is alternatively called ‘SIR Model’ using the letter of parameters: )(tS , )(tI  and

)(tR . Now setting 0.1t , 4.0 , 03.0 , 999)0( S , 1)0( I  and 0)0( R  

as initial conditions, we obtain the following results: 

 

Fig.2.3 Time-dependent solutions for )(tS , )(tI  and )(tR . 

 

This figure indicates that the population under infectious condition increases rapidly within first 

four weeks from only one person under infectious condition. The number turns to decrease after 

the four weeks and the population under recovered condition increases according to the decrease 

of population under infectious condition. We may experience a similar trend when influenza is 

prevalent. SIR model has been further modified to more practical models while considering 

birth and death rates, vaccine effect, reinfection, latent period and so on (shown in later at 

Chapter 4). 

 

2-3 Partial Differential Equation 

 The independent variable t  in the reaction equation udtdu   was the time. ODE has 

one independent variable, while Partial Differential Equation (PDE）is the differential equation 

that has more than two independent variables. 

 For example, the following equation is the simplest PDE: 

x

u

t

u








                               (2.7) 

This PDE is called ‘Convection Equation’. We use the symbol ’∂’ for the derivatives in PDE 

instead of ’d’ in ODE. The differential terms ∂u/∂t and ∂u/∂x are called ‘Partial Derivative’. We 

can easily find one of the solutions for Eq. (2.7) as txu  . Then ∂u/∂t = ∂u/∂x =1. Let’s 

solve this problem using FDM. The convection equation is approximated by FDM as 
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       
x

xxuxxu

t

xuxu nnnn








2

1

                  (2.8) 

where x is one-dimensional space coordinate, u (x) is the unknown variable at x and x is the 

space interval between two neighboring grid points. In this equation, ∂u/∂x is approximated by 

the second-order central difference. ∂u/∂t is approximated by the first-order explicit Euler 

forward difference. These approximations are based on the Taylor’s expansion. The detail is 

explained in later (see Section 2.7). The method in which unknown variables are calculated only 

from known values is called ‘Explicit Method.’  xun 1  is calculated by the following 

assignment expression deformed from Eq. (2.8): 

        xxuxxu
x

t
xuxu nnnn 






2
1                 (2.9) 

Now let’s calculate Eq. (2.9). We set ∆x = 0.1 at 0≦x≦1; the exact solution u = x + t at x = 

0 and x = 1 as the boundary conditions. The exact solution u = x + t is specified at all points 

from x = 0 to x = 1 at t = 0 as the initial conditions. Then the solutions are obtained as in the 

following sheet according to the increase in n by ∆t = 0.01:  

 

n t             

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  x 

1 0.01 0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91 1.01  

2 0.02 0.02 0.12 0.22 0.32 0.42 0.52 0.62 0.72 0.82 0.92 1.02  

3 0.03 0.03 0.13 0.23 0.33 0.43 0.53 0.63 0.73 0.83 0.93 1.03  

4 0.04 0.04 0.14 0.24 0.34 0.44 0.54 0.64 0.74 0.84 0.94 1.04  

5 0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05  

6 0.06 0.06 0.16 0.26 0.36 0.46 0.56 0.66 0.76 0.86 0.96 1.06  

7 0.07 0.07 0.17 0.27 0.37 0.47 0.57 0.67 0.77 0.87 0.97 1.07  

8 0.08 0.08 0.18 0.28 0.38 0.48 0.58 0.68 0.78 0.88 0.98 1.08  

9 0.09 0.09 0.19 0.29 0.39 0.49 0.59 0.69 0.79 0.89 0.99 1.09  

10 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1  

 

Fig. 2.4(a) Solutions by FDM (∆t = 0.01) 

 

The exact solutions are also obtained as 
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n t             

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  x 

1 0.01 0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91 1.01  

2 0.02 0.02 0.12 0.22 0.32 0.42 0.52 0.62 0.72 0.82 0.92 1.02  

3 0.03 0.03 0.13 0.23 0.33 0.43 0.53 0.63 0.73 0.83 0.93 1.03  

4 0.04 0.04 0.14 0.24 0.34 0.44 0.54 0.64 0.74 0.84 0.94 1.04  

5 0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05  

6 0.06 0.06 0.16 0.26 0.36 0.46 0.56 0.66 0.76 0.86 0.96 1.06  

7 0.07 0.07 0.17 0.27 0.37 0.47 0.57 0.67 0.77 0.87 0.97 1.07  

8 0.08 0.08 0.18 0.28 0.38 0.48 0.58 0.68 0.78 0.88 0.98 1.08  

9 0.09 0.09 0.19 0.29 0.39 0.49 0.59 0.69 0.79 0.89 0.99 1.09  

10 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1   

 

Fig. 2.4(b) Exact solutions 

 

2-4 Diffusion Equation 

 A number of physics and social events may be governed by diffusion phenomena. Not only 

heat conduction but also smell, fashion, rumor, infection, vegetation and so on, are dominated 

by a kind of diffusions. PDE governing a diffusion is called ‘Diffusion Equation.’ One of 

typical diffusion equations is defined by  

2

2

x

u

t

u








                           (2.10) 

The right-hand side has a second partial derivative of u with respect to x . This equation can 

simulate a time-dependent diffusion.  For example, one-dimensional heat conduction is 

governed by the following similar equation: 

2

2

x

u

t

u






                            (2.11) 

where   is the heat-conductivity coefficient. This equation is approximated by FDM as 

         
 2

1 2

x

xxuxuxxu

t

xuxu nnnnn








           (2.12) 

The right-hand side is derived by the second-order central difference (see Section 2.7).  xun 1  

is calculated by the following assignment expression: 

   
 

      xxuxuxxu
x

t
xuxu nnnnn 




 2
2

1 
        (2.13) 
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 Now let’s consider a 1-D heat conductive problem setting 10℃ as the initial condition at 0

≦x≦10.  As boundary conditions, the left edge at x = 0 is fixed to 10℃ and the right edge at 

x = 10 is heated and fixed to 100℃. Then the heat is gradually diffused from x = 10 toward x = 

0.  If ∆x = 1, ∆t = 0.5 and 1 , we obtain the solutions till n =10 as shown in Fig. 2.5(a): 

 

Fig. 2.5(a) Time-dependent solutions (∆t = 0.5). 

 

Temperature increases gradually from x = 0 toward x = 10 while increasing in time. The same 

calculation in which only ∆t is slightly increased to 0.6 obtains the following results as in Fig. 

2.5(b): 

 

Fig. 2.5(b) Time-dependent solutions (∆t = 0.6). 

 

The obtained temperature oscillates unphysically at every time step. The oscillation does not 

demonstrate any real physics, but a numerical error. Such oscillation is called ‘Numerical 
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Oscillation.’ The numerical error can be explained by the linear stability analysis. ∆t = 0.5 could 

get a stable solution and that using ∆t = 0.6 became unstable. A numerical method satisfying the 

linear stability (see Section 3.3) must be employed to get a stable solution.  

 

2-5 Types of PDE 

 Let’s define a quasi-linear second PDE for unknown variable  yxu ,  with respect to two 

independent variables yx,  in a general form: 




























y

u

x

u
uyxf

y

u
C

yx

u
B

x

u
A ,,,,2

2

22

2

2

                (2.14) 

where the coefficients A, B and C are constants, and f at right-hand side is at most a function of 

x, y and first partial derivatives.  

 Defining D = B 2 - AC, this equation is categorized to three types according to the sign of D: 

Hyperbolic (D > 0) 

Parabolic  (D = 0) 

Elliptic  (D < 0) 

Originally D is the element in the root square derived in the roots for the following 

characteristic equation of Eq. (2.14) (see Section 3.9) : 

02
2














 C

dx

dy
B

dx

dy
A                         (2.15) 

where the roots of Eq. (2.15) are obtained as 

A

ACBB

dx

dy 


2

                          (2.16) 

Eq. (2.16) indicates that PDE is classified into hyperbolic, parabolic and elliptic types if the 

roots are two different real values, duplicate value, and two different conjugate complex values, 

respectively.  

For example, each type of PDE has a typical form: 

Hypersonic: 0
2

2

2

2









y

u

x

u
 

Parabolic: 
y

u

x

u








2

2

                                (2.17) 
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Elliptic:  0
2

2

2

2









y

u

x

u
 

The hyperbolic form is identical to PDE called ‘Wave Equation’. The form for parabolic PDE 

becomes the same with the equation of heat conduction if y  is changed to the time t . The 

elliptic PDE is called ‘Laplace Equation’ and that with a value at right-hand side is called 

‘Poisson Equation’. 

 

2-6 Finite Difference of Laplace Equation 

 2-D Laplace equation is defined by 

0
2

2

2

2









y

u

x

u
                          (2.18) 

This equation is approximated by the second-order central difference as follows: 

     
 

     
 

0
,,2,,,2,

22









y

yyxuyxuyyxu

x

yxxuyxuyxxu
 

                                                                        (2.19) 

where  yxu ,  is the unknown variable u  at the point  yx, . ∆x and ∆y are space intervals 

between two neighboring grid points in x and y directions. Setting ∆x = ∆y, we further simplify 

Eq. (2.19) into  

          yyxuyyxuyxxuyxxuyxu  ,,,,
4

1
,       (2.20) 

This equation has quite a simple form for updating  yxu ,  as the sum of four known values 

around the point for  yxu , .  

 

2-7 Taylor’s Expansion 

   We know that the first derivative term du/dx of u with respect to x is originally defined by  

   
x

xuxxu

dx

du
x 




 0
lim                      (2.21) 

where  xu  and  xxu   are the unknown variables on a grid point shown in the following 

figure: 
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Fig.2.6 Definition of unknown variables 

 

Finite-difference approximation takes the truncation error into account for du/dx.  xxu   is 

derived by Taylor’s expansion as 

           
 

     
n

nn

n

nn

dx

ud

n

x

dx

xud

n

x

dx

xudx

dx

xdu
xxuxxu


! ! 1! 2 1

11

2

22 








 



  

(2.22) 

where xxx   . We can obtain du/dx from Eq. (2.22): 

         
 

     
n

nn

n

nn

dx

ud

n

x

dx

xud

n

x

dx

xudx

x

xuxxu

dx

xdu 
! ! 1! 2

1

1

12

2

2 



 












   

(2.23) 

Terms after the second term at the right-hand side correspond to the truncation error. These 

terms have a first-order error because of  ΔxO . Then this equation is rewritten by 

       Δx
x

xuxxu

dx

xdu
O




                    (2.24) 

 Also  xxu   can be derived by Taylor’s expansion as the same manner with Eq. (2.22) as 

             
 

     
n

nn

n

nn

dx

ud

n

x

dx

xud

n

x

dx

xudx

dx

xdu
xxuxxu


! ! 1! 2 1

11

2

22 








 





 (1.25) 

We can obtain an alternative form with the second-order truncation error using  xxu   and 

 xxu   : 

       

      2

3

32

O
2

          

122

x
x

xxuxxu
dx

udx

x

xxuxxu

dx

xdu














 

               (2.26) 

Now let’s modify the notation of unknown variables and the grid points where the unknown 

values are located using the number of grid points j  as shown in the following figure: 

 

Fig. 2.7 Definition of grid points and unknown variables 
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Removing the truncation error term  ΔxO , the first-order forward and backward differences 

of du/dx are defined by  

x

uu

dx

du jj

j 









 1 ,  

x

uu

dx

du jj

j 









 1               (2.27) 

Also the second-order central difference is defined by 

x

uu

dx

du jj

j 









 

2
11                         (2.28) 

The second-order central difference of 22 dxud can be further derived as 

 2
11

2

2 2

x

uuu

dx

ud jjj

j 










 
                    (2.29) 

Note that the second derivative term in Eq. (2.29) is originally defined by  

jj
dx

du

dx

d

dx

ud























2

2

                       (2.30) 

The second derivative term is firstly approximated using the first derivatives at the intermediate 

points 21j  as shown in the following figure: 

 

Fig. 2.8 Definition of grid points and first derivatives at 21j . 

 

Using the first derivatives, we obtain 

x

dx
du

dx
du

dx

ud jj

j
























  2121

2

2

                 (2.31) 

where the first derivatives are approximated by the second-order central difference as 
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x

uu

dx

du jj

j 









 



1

21

  and  
x

uu

dx

du jj

j 









 



1

21

         (2.32) 

Finally we can obtain 

 2
11

2

2 2

x

uuu

dx

ud jjj

j 










 
                   (2.33) 

 

2-8 Boundary Condition 

 Because we calculate unknown variables on grid points at a finite area for solving PDE by 

FDM, we should specify the Boundary Conditions (B.C.). The condition setting unknown 

variable itself at the boundary is called ‘Dirichlet’s B.C.’, while the boundary condition 

specifying a first partial derivative of unknown variable is called ‘Neumann’s B.C.’. Since the 

Neumann’s B.C. specifies the derivative of unknown variables, we need to get the solution of 

unknown variable at the boundary, for example, at the grid point 1j  in Fig. 2.9. Let’s 

specify   01  xu  at 1j . One of typical treatment for the B.C. is first to derive a 

first-order forward difference of  122 xu   according to Fig. 2.9. Then we derive the FDM 

form: 

2
1211

1

2

2

x

dx
du

dx
du

dx

ud

























 
                  (2.34) 

The first derivatives are further approximated by  

x

uu

dx

du














12

211

 and 0
1









dx

du
               (2.35) 

Substituting Eq. (2.35) into Eq. (2.34), we obtain  

 
 2

12

1
2

2 2

x

uu

dx

ud












                      (2.36) 

The derivative at the right edge boundary can be derived as the same manner.  
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Fig. 2.9 Definition of grid points near the left boundary. 

 

Note that zeroth-order accurate B.C. setting 21 uu   may be also acceptable and rather usual as 

a simpler treatment for Neumann’s B.C.. 
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3. FDM for Mathematical Models based on PDE 

   Let’s explain the detail of FDM applied to mathematical models defined by PDE hereafter. 

 

3-1 Relaxation Method for Laplace Equation 

Following figure shows a computational grid in two dimensions. FDM solves equations only 

on the grid points. If we number i (1 to IF) and j (1 to JF) in x and y directions on the grid 

points, then jiu ,  is defined as the unknown variable u on (i , j) grid point. 

 

Fig. 3.1 Definition of 2-D grid points and unknown variables 

 

2-D Laplace equation Eq. (2.18) is approximated by the second-order central difference on 

the grid points as 

   
0

22
2

1,,1,

2

,1,,1 







 

y

uuu

x

uuu jijijijijiji              (3.1) 

In particular, ∆x = ∆y further simplifies the equation into 

 1,1,,1,1, 4

1
  jijijijiji uuuuu                  (3.2) 

Using the iteration number n (note that n is not the time step here because of no time derivative 

in Laplace equation), we obtain a well-known relaxation method called ‘Jacobi method’: 

 n
ji

n
ji

n
ji

n
ji

n
ji uuuuu 1,1,,1,1
1

, 4

1


                   (3.3) 

A steady state solution is only obtained by increasing the iteration number n and repeating the 

computation in Eq. (3.3). Jacobi method calculates unknown variable 1nu at (i,j) grid point 
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from already known values nu  at four grid points around the grid point (i,j) . This means that 

all unknown variables 1nu can be calculated in parallel from only known values. Jacobi 

method is straightforward to a parallel computation for Eq. (3.1) if we use a parallel computer.  

The following is a further modification on Jacobi method at the point for saving the 

computational time assuming that we use a computer with a single processor or at most a few 

processors. Gauss-Seidel (GS) method is a relaxation method modified from Jacobi method to 

reduce the iteration number n, accelerating the computational time. GS method is defined by 

 1
1,1,

1
,1,1

1
, 4

1 





  n
ji

n
ji

n
ji

n
ji

n
ji uuuuu                   (3.4) 

Compared with Jacobi method, two terms at the right-hand side are defined at the iteration 

number n+1.  

Figure 3.2 shows the grid points and a hyper line (skew line crossing the grid points) which 

explains how to calculate Eq. (3.4). The hyper line moves from the lower left grid points toward 

the upper right grid points. The unknown variables at grid points where the hyper line passed 

are updated to those at n+1. GS method applies the already updated variables 
1
,1



n

jiu and 
1
1,




n
jiu  

into the equation as in Eq. (3.4) for calculating 
1

,
n
jiu . Using these variables in GS method 

resultantly can reduce the iteration number to half as compared with that of Jacobi method.  

 

Fig. 3.2 Schematic of GS method and hyper line. 
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 Successive Over-Relaxation (SOR) method [7] is a relaxation method further extended from 

GS method.  Now if 
1

,
n
jiu  in Fig. (3.4) is rewritten as  

GS

n
jiu 1

,
 ,  SOR method is defined by  

    n
jiGS

n
ji

n
ji uuu ,

1
,

1
,  1                        (3.5) 

This equation represents the linear interpolation between 
n

jiu ,  and  
GS

n
jiu 1

,
 .  We know that 

the value of interpolation parameter ω is generally defined within 0 < ω < 1. But this value is 

set to more than one (1 < ω) and ω < 2 in SOR method. This value is called ‘Over-relaxation 

Parameter’. It means that the value of GS method is overestimated in SOR method. Empirically 

ω is usually set to around 1.5. If ω = 1.5, SOR method can reduce the iteration number to one 

third from that of Jacobi method. SOR method may be the most proper method for solving 

Laplace equation. 

 

3-2 3-D Potential Flow solved by SOR Method 

 

Let’s solve a 3-D potential flow using SOR method. Flow velocities u , v , w  in x , y  

and z  directions is assumed to be defined by the gradient of potential   for the potential 

flow as follows:  

x
u







, 
y

v






, 
z

w






                      (3.6) 

The continuity equation governing 3-D incompressible flows is defined by  

0











z

w

y

v

x

u
                          (3.7) 

Substituting Eq. (3.6) into Eq. (3.7), then we obtain  

0
2

2

2

2

2

2













zyx


                        (3.8) 

and Eq. (3.8) results in 3-D Laplace equation. 

Vorticities of 3-D incompressible flows are defined by the following vector: 






























y

u

x

v

x

w

z

u

z

v

y

w
,,  

Since all these elements are reduced to zero if Eq. (3.6) is substituted, the potential flow is 

equivalent to an irrotational flow. 

The second-order finite-difference form of Eq. (3.8) is derived as  
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     
0

222
2

1,,,,1,,

2

,1,,,,1,

2

,,1,,,,1 












 

zyx

kjikjikjikjikjikjikjikjikji 
  (3.9) 

where the subscript k is the number of grid points in z direction.  Eq. (3.9) is further rewritten 

as the following equation: 

      





















 

2

1,,1,,

2

,1,,1,

2

,,1,,1
,,

1

zyxL
kjikjikjikjikjikji

kji


           (3.10) 

where      222 222 zyxL  . If SOR method is applied to Eq. (3.10), then we 

obtain the following final form: 

 
      





























 

2

1

2

1

2

1

1 1,,1,,,1,,1,,,1,,1

,,,,
1

zyxL

nnnnnn

nn kjikjikjikjikjikji

kjikji

        (3.11) 

The solution of 3-D potential flow is obtained by the iterative computation.  

The problem solved here is shown in Fig. 3.3(a). The computational grid points are 

212121  . A potential flow over a cubic which surfaces are located at 8 kji and 

14 kji  is considered. As the boundary conditions, 0 at the inlet boundary surface 

1i , 1  at the outlet boundary surface 21i . 0 n is specified at the normal 

direction of the other surfaces. 1.0 zyx .   is fixed to 1.5. 

Fig. 3.3(b) shows the calculated potential distribution on 11j  grid surface. The potential 

is smoothly distributed from 0  to 1  over the cubic.  

Fig. 3.3(c) shows the velocity vectors on 11j  grid surface. The vector is obtained by the 

calculation of the gradient of potential  . The Fortran program made for solving this problem 

is uploaded at the Web page: 

http://www.caero.mech.tohoku.ac.jp/publicData/Numerical/index.html 
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(a) Computational grid and boundary conditions 

 

 
(b) Potential distribution 
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(c) Velocity vectors 

Fig. 3.3 Solution of 3-D potential flow 

 

 

3-3 FDM for Equation of Heat Conduction  

   1-D equation of heat conduction is written here again: 

2

2

x

u

t

u






                               (3.12) 

This equation is approximated by the second-order central difference in space and by the 

first-order forward difference in time as follows: 

 2
11

1 2

x

uuu

t

uu n
j

n
j

n
j

n
j

n
j








 


                      (3.13) 

where 
n
ju  is the unknown variable u at n time-step in time direction and at j grid point in x 

direction. The assignment expression is derived as 

 n
j

n
j

n
j

n
j

n
j uuuuu 11

1 2 
                         (3.14) 

where  2xt  . FDM employed in Eq. (3.13) is called ‘First-order Explicit Euler 

Forward Method,’ where the variable at n+1 time-step is calculated from the known variables at 

n time-step only.  

   As another method, Crank-Nicolson implicit method [8] is known and widely used. Then 

the 1-D equation is approximated as  
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    














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




 








2

11

2

1
1

11
1

1 22

2 x

uuu

x

uuu

t

uu n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j 

            (3.15) 

The space difference of ∂2u/∂x2 at n time-step and n+1 time-step are evenly averaged in the 

equation. The method in which the unknown variables at n+1 time-step both in the left- and 

right-hand sides are calculated at the same time is called ‘Implicit Method’. Solving Eq. (3.15) 

basically needs the computation of a matrix inversion (see Section 3.5 and 3.6). 

 

3-4 Linear Stability Analysis 

 As mentioned before, the numerical oscillation when 1-D equation of heat conduction is 

solved by an explicit method with a large ∆t can be explained by the linear stability analysis 

proposed by von Neumann. The detail may be reported in the paper by Crank and Nicolson [8]. 

The assignment expression of the first-order explicit Euler forward method applied to the 

equation of heat conduction is written again as 

 n
j

n
j

n
j

n
j

n
j uuuuu 11

1 2 
                        (3.16) 

von Neumann’s linear stability analysis assumes that the unknown variable 
1n

ju  consists of a 

trigonometric function with an amplitude and arbitrary phases as defined by  

 jiGu nn
j exp                        (3.17) 

where G＝G(θ) is the amplitude factor and the function of the phases θ =π/s ( s=±1, ±2, ±3, 

±4,…). Note that the superscript n of G is not the time-step but the exponentiation. i is the 

imaginary unit (not the number of grid points). This trigonometric function is substituted into 

Eq. (3.16). Then we obtain 

     ijnjinijnjinjin eGeGeGeGeG 111 2              (3.18) 

Finally we can derive G from Eq. (3.18) as  

 cos121  G                        (3.19) 

von Neumann’s linear stability analysis judges that the FDM form is linearly stable when the 

absolute value of G is not more than 1. Therefore the stable condition of Eq. (3.19) is obtained 

when 5.0  as the numerical example in Fig. 2.5(a). 

The Crank-Nicolson implicit method applied to 1-D equation of heat conduction is written 

usingas 
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    n
j

n
j

n
j

n
j

n
j

n
j uuuuuu 11

1
1

11
1 1212 





            (3.20) 

The above trigonometric function can be also applied to this form: 

     

      



ijnjinijn

ijnjinijn

eGeGeG

eGeGeG
11

11111

12                  
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










           (3.21) 

The value of G is finally obtained as 

 
 


cos11

cos11








G                            (3.22) 

We can find that the absolute value of Eq. (3.22) is always less than one, resulting in 

unconditionally stable condition. As a result, the Crank-Nicolson method is completely free 

from the linear stability limitation. However, the value of  is actually restricted by the 

boundary conditions, even if the value of  can sufficiently increase as compared with that of 

the explicit method. 

 

3-5 Direct Method 

 The equation of heat conduction approximated by the Crank-Nicolson implicit method is 

shown here again as 

    n
j

n
j

n
j

n
j

n
j

n
j uuuuuu 11

1
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1 1212 





              (3.23) 

where the right-hand side is composed of only known values. If all known values are replaced 

by simple characters a , b , c  and j , then we get the simplified equation: 

j
n
j

n
j

n
j cubuau  





1
1

11
1                       (3.24) 

Actually, this equation is defined at each grid point j like the series of the equations: 

・ 

・ 

・ 
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・ 

・ 

These equations can be written using a matrix and vectors as 
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                (3.25) 

This matrix form indicates that the vectors of 
1nu can be obtained by the matrix inversion. For 

example, we know the Gauss elimination method and the lower-upper decomposition method as 

the method solving the matrix inversion. Such methods are called ‘Direct Method’. We only 

have to calculate the matrix inversion to get 
1nu . 1-D equation of heat conduction 

approximated by the Crank-Nicholson implicit method can be solved by the direct method. 

However, such a matrix for a multi-dimensional equation is basically quite complicated, and 

also the computation of a very-large matrix inversion using a direct method may spend a large 

storage of memories.  Direct methods are not useful for large-scale multi-dimensional 

problems.  

 

3-6 Relaxation Method for Equation of Heat Conduction 

   Let’s show again the FDM form for 1-D equation of heat conduction approximated by the 

Crank-Nicolson implicit method:  
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           (3.26) 

When  2xt  , then 

  j
n
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j

n
j

n
j uuuu  





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1
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1
1                   (3.27) 

where 

  22 11
n
j

n
j

n
j

n
jj uuuu     

The solution of Laplace equation at n+1 time-step have no meaning until the steady state 

solution is obtained, while equations of heat conduction are timely dependent and give an 
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accurate solution at each time-step within the finite-difference accuracy. An additional inner 

iteration like the relaxation methods for Laplace equation is necessary if the same method is 

applied to Eq. (3.27).  

 First, if the Jacobi method is applied to Eq. (3.27), we obtain the following equation: 
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where m is the inner iteration for the relaxation process. While increasing in the iteration 

number m at each n time-step, 
1n

ju  is obtained when the value at m+1 iteration is almost equal 

to that at m iteration. 

 Gauss-Seidel method can be also applied to Eq. (3.28) as follows: 
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Further, Eq. (3.29) is extended to that for SOR method [7]:  
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3-7 Excel Macro Program for 2-D Equation of Heat Conduction 

 

Let’s introduce a macro program based on Excel sheet for simulating 2-D equation of heat 

conduction.  

   The 2-D equation of heat conduction is defined by 
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As an easy algorithm for Excel macro program, the first-order explicit Euler forward method is 

employed as FDM:  
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Setting yx  , this FDM form is finally reduced to a simple assignment statement: 
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 Figure 3.4 shows the Excel sheet prepared for initial values. The sheet is composed of Area 

1 for setting initial values, Area 2 for storing calculated results at n time-step, Area 3 for the 
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calculation at n + 1 time-step and for storing calculation results, and Area 4 for visualizing 

calculated results. Four variables of t , x ,   and the time t  are fixed in Area 1. Values 

of the n time-step at the grid points are shown in the Area 2, and the number of grid points is 

determined as IF= 11 and JF = 11 in this Excel sheet. Cells from C7 to C 17 are entered with 1 

as the initial value, and all of other cells are set as 0. The Area 3 is the main part where the 

calculation at n + 1 time-step is executed and Eq. (3.32) is solved in all cells except ones on the 

boundary. When the cell D22 is selected, the following arithmetic expression is shown there: 

fx = D8+$B$4*$D$4*(E8+C8+D9+D7-D8*4)/$C$4/$C$4 

where the $ sign means a cell reference. When $ sign is attached to both a column letter and a 

line number of a cell, the cell is a fixed reference, that is, each $B$4, $C$4 and $D$4 refers 

respectively to 0.25, 0.1 and 0.01 which are values of Delta t, Delta x and Kappa in the Area 1. 

Also, each cell of D8, E8, C8, D9 and D7 respectively correspond to cells in the Area 2 where 

values of 
n

jiu , , 
n

jiu ,1 , 
n

jiu ,1 , 
n

jiu 1,   and 
n

jiu 1,   are stored. Therefore, it is understandable 

that Eq. (3.32) at the grid point of i = 2 and j = 2 is calculated at the cell of D22. The calculation 

formula at each grid point, except grid points on boundaries, is automatically formed by 

copying the calculation formula at D22 into it. On the other hand, concerning boundaries, a 

calculation of the formula is required at each grid point corresponding to the top and bottom 

sides given the Neumann boundary condition. Because the calculation formula applying the 

difference approximation is an explicit solution, the value at each grid point on the boundaries 

can be easily obtained by extrapolating the value at the neighboring grid point to the boundary 

which was calculated at n + 1 time-step. For example, the calculation formula of the cell of D21 

located on the top side boundary is expressed with fx = D22. The procedure for other grid points 

is the same. Results of the calculation at n + 1 time-step are stored in the Area 3 just after the 

calculation is finished. 

 Figure 3.5 shows the sheer for the macro program proceeding the iteration. The work for the 

calculation is simple because results calculated in Area 3 are merely copied into Area 2 at every 

time-step, and the routine renewing a value of time is added. As the result, only 7 lines are 

necessary to make the macro program in Fig. 3.5.   

Finally, the name of the macro program is selected by clicking on Tool - Macro – Macro 

(depends on Windows version), and the macro program is started by clicking on the run button. 

By the way, the macro program is set to calculate 40 time-steps repeatedly copying values of 

C21:M31 in Area 3 being a two dimensional cell area to C7:M17 in Area 2 being a two 

dimensional cell area, and at the same time, the value of Delta t in the cell B4 is added to the 

Time in the cell E4. The total value of the Time is 0.25 × 40 = 10.0. When there is a need to 

increase the number of time-steps, the value of a time-step is increased. or the macro program is 
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run repeatedly.  

Figure 3.6 shows sheet describing the calculated results in the case of 40 time-steps. The 

value of the time is renewed and results of the calculation appear in cells of both Area 2 and 

Area 3 and the results in Area 3 are visualized in Area 4. 

This Excel macro program is uploaded at the Web page: 

http://www.caero.mech.tohoku.ac.jp/publicData/Modeling/index.html 

 

   
Fig. 3.4 Excel sheet setting the initial values 

 

Area 1 

Area 2 

Area 3 

Area 4 
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Fig. 3.5 Macro program 

 

 ¥ 

Fig. 3.6 Excel sheet representing a time-dependent solution. 
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3-8 3-D Heat Conduction over A Cubic Body 

 Next let’s solve 3-D equation of heat conduction by the Crank-Nicolson implicit method and 

SOR method. The fundamental equation and the methods are briefly introduced here. 

The fundamental equation considering anisotropic heat conduction is defined by 
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where T  is temperature. x , y  and z  are the heat conductivity coefficients in x , y

and z  directions.  This equation is approximated by the Crank-Nicolson implicit method as 

follows: 
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       (3.34) 

where i , j  and k are the grid numbers in x , y  and z  directions. The subscripts r  and 

l  for the heat conductivity coefficients indicate for example      2,,,,1 kjixkjixxr     

and      2,,1,, kjixkjixxl    in x  direction.  Those in other directions are also defined 

by the same manner. Eq. (3.34) is modified by SOR method and the following assignment form 

is derived: 
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where  
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As a sample example for this problem, let’s simulate heat conduction over a cubic body shown 

in Fig. 3.7(a). A rectangular 3-D mesh with 21×21×21 grid points are generated. As the initial 

condition, the space except for the body is fulfilled with a substance warmed at 50℃. As 

boundary conditions, the temperature at 1i  boundary surface is heated and fixed to 100℃. 

The temperature at 21i  boundary surface is only fixed at 50℃. Other boundaries are 

adiabatic on the temperature and the Neumann boundary condition is applied. The heat 

conductivity coefficient for the cubic body and the surrounding substance are specified to 1.0 

and 5.0.  

Figure 3.7(b) shows the calculated temperature at 11j  grid surface obtained after 1000 

iterations setting 001.0t . The temperature is smoothly distributed over the cubic from the 

inlet to outlet.  

   This program may be applied to the simulation of reaction-diffusion equations introduced at 

the following chapter. The Fortran program is uploaded at the Web page: 

http://www.caero.mech.tohoku.ac.jp/publicData/Numerical/index.html 
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(a) Schematic of sample example 

 

(b) Calculated temperature distribution 

Fig. 3.7  3-D heat conduction over a cubic body 
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3-9 Characteristic Equation 

A quasi-linear second PDE for unknown variable  yxu , with respect to two independent 

variables yx,  in a general form is shown again: 
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where the coefficients A, B and C are constants, and f at right-hand side is at most a function of 

x, y and first partial derivatives.  

 Defining D = B 2 - AC, this equation is categorized to three types according to the sign of D: 

Hyperbolic (D > 0) 

Parabolic  (D = 0) 

Elliptic  (D < 0) 

The reason is explained by the theory of characteristics. Then the partial derivatives in Eq. 

(3.36) are replaced by alphabetic characters as follows: 
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Eq. (3.36) is simplified using the characters in Eq. (3.37) as 

fCtBsAr  2                          (3.38) 

The total differentials of p and q  are defined by the following equations:  
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Deriving r  and s  from Eq. (3.39), these values are substituted into Eq. (3.38) as 
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Since the left hand side of Eq. (3.40) is composed of the terms with and without s , we obtain 

the following equation: 
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This equation should be satisfied for arbitrary s . It is equivalent to satisfy the following two 

equations: 
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and 
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The former equation Eq. (3.42) is called ‘Characteristic Equation’. Eq. (3.42) forms a quadratic 

equation of the roots obtained as  
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ACBD  2  corresponds to the value in the root square. If 0D , 0D , and 0D , 

then Eq. (3.44) and (3.45) as the roots of characteristic equation are reduced to two real roots,  

duplicate root, and two imaginary roots, respectively. Finally, Eq. (3.36) as a quasi-linear 

second PDE with two independent variables are categorized according to the roots of the 

characteristic equation to hyperbolic, parabolic, and elliptic if Eq. (3.44) and (3.45) are two real 

roots, duplicate root, and two imaginary roots, respectively. 

On the other hand, Eq. (3.43) is rewritten using dxdy as 

0  f
dx
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Because Eq. (3.46) has only one independent variable, Eq. (3.46) divided from the partial 

differential equation Eq. (3.36) results in an ordinary differential equation.  

Let’s explain the roots of characteristic equation geometrically. Fig. 3.8 shows two lines 

drawn from two points    0,  ,0, 21 xx  on the initial value  0  0  yy . If the gradient of 

each line dxdy  equals to the root of the characteristic equation Eq. (3.42), these lines 

indicate the trace of solutions of Eq. (3.36) propagated from the two points. Such lines are 

called ‘Characteristic Curves’ (note that those are curves in second order accuracy, but lines in 

first order accuracy).  
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Fig. 3.8 Characteristic curves and the gradient. 

 

Characteristic curves propagated from the points Land M  are shown in Fig. 3.9. The 

roots of the characteristic curves extending to x and x directions are defined as  and  , 

respectively. The curve with the gradient (root) 
L  propagated from the point L  satisfies the 

following ordinary differential equation.  

0 
LL f

dx

dq
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A                       (3.47) 

 

 

Fig. 3.9 Ordinary differential equation satisfied on characteristic curve. 
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4. Mathematical Modeling based on Reaction Equations 

 

4-1 SIR Model and the Extension 

SIR model proposed by Kermack and McKendrick [1] - [3] was introduced at Chapter 2. This 

model is a typical well-known system of reaction equations which can predict the transmission 

of infection. SIR model is composed of three reaction equations as shown again: 
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where )(tS  is the density of population under susceptible condition. )(tI  is the density of 

population under infectious condition. )(tR  is the density of population under recovered, 

removed or immune condition.   is the transmission rate from susceptible condition to 

infectious condition and   is the recovered rate; both are empirical constants. The total 

population )()()()( tRtItStN   is constant and the above equations derives 
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A typical result solving Eq. (4.1) was represented at Chapter 2. In this Chapter, Eq. (4.1) is 

further modified by considering additional physics and events. Eq. (4.1) can simulate the 

transmission of infection under a constant population. However, actually some events such as 

the birth, death, immigrant, and the changing age may occur. Eq. (4.1) is modified by 

considering the birth and death:  
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where b is the birth rate and   is the normal death rate. This model is called Endemic SIR 

model. To prevent influenza virus, people may receive the vaccine. The effect of vaccine can be 

also considered in the model as follows: 
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where e  is the inoculation rate of vaccine for children. Population who inoculated the vaccine 

is moved directly to the population under recovered. Even though the number is small, a part of 

population may be infected again after the recover from the first infection. Then Eq. (4.4) is 

modified considering the reinfection as 
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where   is the reinfection rate.  

 

4-2 SEIR Model  

The symptoms of fever and cough due to the influenza may start with a latent period after 

catching the virus. The latent period can be modeled by introducing an additional equation. The 

system of four equations are defined by 
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                      (4.6) 

where E  is the population under latent period.   is the transmission rate from latent period 

to infection period. This model is called ‘SEIR Model’.  

Mathematical models are being updated considering additional physics and events like the 

developing story from Eq. (4.1) to Eq. (4.6). These models can further include diffusion terms 

for considering the space distribution of the population like the next Chapter 5, extending to the 

system of PDE as reaction-diffusion equations. 
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5. Mathematical Modeling based on Reaction-Diffusion Equations 

 

5-1 Reaction-Diffusion Equation 

  The equation of heat conduction coupled with a reaction term is called ‘Reaction-Diffusion 

Equation (RDE)’. Let’s define a RDE as 
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                             (5.1) 

where a is a constant. The source term au is easily added to the FDM form in Eq. (3.28) based 

on the Crank-Nicolson and Jacobi method as 
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As a well-known RDE, the following RDE with a cubic source term was proposed: 
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where is an empirical constant. This RDE is called ‘Nagumo’s Equation’ [2] and is a typical 

mathematical model for simulating a signal transmission of neuro system. Also the following 

equation is called ‘Fisher’s Equation’ [9]: 
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This RDE can simulate a growth and diffusion in ecological system. In particular, the RDE 

setting ε = 0 reduces to a reaction equation called ‘Logistic Equation’ which can predict a 

population increase. Generally, a lot of phenomena and social events may be modeled by RDE. 

Now let’s solve the Fisher’s RDE. Setting 0≦x≦1, ε = 0.001, 1a , u(x,0) = 0.01 + 0.1 

sin πx and ∆t = 0.1, we obtain a result shown in Fig. 3.1(a) in which u  increases while 

increasing in time and the value is the maximum at x = 0.5. We also obtain another result in Fig. 

5.1(b) when a = 1. In contrast to Fig. 3.1(a), u decreases while increasing in time even if the 

maximum value is located at x = 0.5. 

  Fisher’s equation can simulate the increase or decrease of u as changing a and the 

distribution of u as changing the diffusion parameter ε. This equation may apply for simulating 

the growth and disappearance of the number density of an ecological system if u is defined by 

the number.  
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Fig. 5.1(a) Time-dependent solution for Fisher’s equation ( 1a ). 

  

 

Fig. 5.1(b) Time-dependent solution for Fisher’s equation ( 1a ). 

 

5-2 System of RDE’s 

  System of RDEs can simulate a number of more complicated physics and social events. 

Let's consider the following equations: 
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                     (5.5) 

where u  and v  are unknown variables,   is a diffusion coefficient and a  is an empirical 

constant. Initial values for u  and v  are specified as shown in Figs. 5.2(a) and 5.2(b), setting 
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0≦x≦1, 0≦y≦1, ε = 0.2 and a = 5. As boundary conditions, 0 nu  and 0 nv  

toward the normal direction at all boundaries. As initial values, u(x,y,0)=exp[{(x - 0.5)2 +(y - 

0.5)2}*50] and v = 1. 

 
Fig. 5.2(a) Initial value for u . 

      

Fig. 5.2(b) Initial value for v . 

 

When t = 0.3 after 300 iterations with ∆t = 0.001, we obtain the solutions shown in Figs. 5.2(c) 

and 5.2(d). We can find that the maximum of u  increases 1.5 times more than that of initial 

value and the distribution is more widely spread, while v  decreases and has the minimum 
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value at the same point where u  has the maximum value. This system of RDEs may simply 

simulate for example the growth of bacteria in nutritive system, where u  and v  are the 

densities of bacteria and nutritive. 

 

Fig. 5.2(c) Time-dependent solution for u . 

 

          
Fig. 5.2(d) Time-dependent solution for v . 

 

   A diffusive chemical reaction governing the reaction process 

C      B A                               (5.6) 

is modeled by a system of RDEs, where A and B are reactive substances and C is the product 

substance. This process is modeled by the following three RDEs: 
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where u , v  and w  are the densities of A, B and C. uD , vD  and wD  are the diffusion 

coefficients for u , v  and w ; a  is the reaction rate. Note that u2  is the diffusion term 

represented by Nabla operator. 

 

5-3 A Mathematical Model for Bacteria and White Cell 

 Alt and Lauftenberger [10] proposed a mathematical model which can simulate the 

defensive system of white cell against bacteria. This system is modeled by the assumption: 1) 

bacteria is increased and diffused. 2) bacteria excrete an attractant. 3) white cell approaches 

bacteria according to the density of the attractant. 4) white cell eats bacteria; both bacteria and 

white cell are broken at the same time. Then the model is written by the following three 

equations: 
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where u  is the density of bacteria, v  is the density of the attractant and w  is the density of 

white cell. a , b , c , d , e  and   are empirical constants. Note that the third term at the 

right-hand side of third equation is expanded for three-dimension as 
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This term approximates the movement of white cell to bacteria according to the density of the 

attractant. Alt and Lauftenberger assumed one-dimensional problem. Here the above equations 
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are further extended to two-dimensional equations with the consideration of nutritive for 

bacteria. Then the following four equations are obtained: 
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                (5.9) 

where n  is the density of nutritive and   is an empirical constant. 

   One of typical solutions for Eq. (5.9) is introduced here. Empirical constants set here are 

summarized in Table 1. 

Table 1 Empirical constants in Eq. (5.9)  

a  b  c  d  e      

1.0 100.0 1.0 1.0 100.0 1.0 10.0 

and 0.1 nwvu DDDD . If initial conditions setting u(x, y, 0)=exp[{(x – 0.5)2 + (y – 

0.5)2}*50], v(x, y, 0) = 0.0, w(1, y, 0) = 1.0 and n(x, y, 0) = 1.0 at 0≦x≦1 and 0≦ y≦1 are 

visualized in Fig. 5.3. 

 

 

(a)                                     (b) 
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(c)                                      (d) 

Fig. 5.3 Initial values [(a) density of bacteria, (b) density of attractant, (c) density of white cell  

(d) density of nutritive]. 

 

   Figure 5.4 shows the calculated results after 400 time-steps setting 001.0t . The density 

of bacteria shown in Fig. 5.4(a) relatively decreases and the maximum location moves toward -x 

direction. The density of attractant is found and the value near the region where the density of 

bacteria is higher may be also slightly higher than that around the location as shown in Fig. 

5.4(b). Fig. 5.4(c) indicates that white cell approaches bacteria. The value may be relatively 

lower near the region where the density of bacteria is higher. The density of nutritive in Fig. 

5.4(d) decreases due to the consumption by the bacteria. From these results, the assumption of 

the mechanism for bacteria and white cell modeled in Eq. 5.9 may be represented in Fig. 5.4.  

The Excel macro program for this problem is uploaded at 

http://www.caero.mech.tohoku.ac.jp/publicData/Modeling/index.html 

 

 
(a)                                         (b) 
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(c)                                         (d) 

Fig. 5.4 Time-dependent solutions [(a) density of bacteria, (b) density of attractant, 

(c) density of white cell (d) density of nutritive]. 

 

   3-D cases for bacteria and white cell were also simulated by solving 3-D equations of Eq. 

5.9. Only a typical visualized result is shown here. Setting all empirical constants properly and 

u(x, y, z, 0)=exp[{(x – 0.5)2 + (y – 0.5)2  + (z – 0.5)2}*50], v(x, y, z, 0) = 0.0, w(1, y, z, 0) = 1.0 

and n(x, y, z, 0) = 1.0 as initial values at 0≦x≦1, 0≦y≦1 and 0≦z≦1 obtains an early 

relation between bacteria and white cell as shown in Fig. 5.5(a). 

 

 

Fig. 5.5(a) An early result showing densities of bacteria and white cell. 

 

  After a number of time-steps, the relationship is changed as the following result in Fig. 

5.5(b). Although the reliability of solution is not guaranteed, white cell moves toward the 
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bacteria. The density distribution of bacteria was finally forced to be deformed due to the 

approach of white cell. 

 

 

Fig. 5.5(b)  A time-dependent result showing densities of bacteria and white cell. 

 

5-4 Mathematical Model for Self-replicating Pattern 

   More than half century ago, Turing [11] who is well-known as the machine learning also 

presented a paper proposing that a space non-uniform solution can be obtained from a 

reaction-diffusion equation. In addition, he argued that cell differentiation and the 

morphogenesis are governed by diffusion phenomena. Almost at the same time, Hodgkin and 

Huxley [1] proposed that a system of RDE’s can obtain a solution of the pulsative signal of ion 

going in and out a nerve membrane. After forty years, Pearson [12] presented a paper in which 

complex pattern can be simulated by a simple system such as RDEs. His computer simulation 

verified that the arguments by Turing, Hodgkin and Huxley. A unique system of RDEs, let’s 

introduce the so-called Gray-Scott model simulated by Pearson here. 

   Gray and Scott [13] presented a paper in which an auto catalytic reaction is observed in a gel 

medium. The system of reactions was reported as 

C          B

3B   2B   A




                         (5.10) 

A, B and C are chemical substances and the substance A works as a catalytic one. The 

mathematical model governing the reactions is defined by 
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where u , v  and w  are the densities of substance A, B and C. f and k  are empirical 

constants. Pearson reported that a slight change of the two empirical constants induced a large 

difference of solution and each solution has its own unique pattern. He categorized solutions 

into 12 patterns where he sets 5102 uD  and 510vD . Modifying the Fortran program 

for 2-D equation of heat conduction with 256×256 grid points, three typical patterns could be 

obtained. When 024.0f  and 063.0k , a pattern fulfilled with spots which are increased 

by self-duplication from initial values was obtained as shown in Fig. 5.6(a). Fig. 5.6(b) shows a 

time-dependent solution like a labyrinth pattern when 044.0f  and 063.0k . Fig. 5.6(c) 

shows a time-dependent chaotic pattern when 02.0f  and 052.0k . 

 

   

(a) 024.0f , 063.0k    (b) 044.0f , 063.0k   (c) 02.0f , 052.0k  

Fig. 5.6 Time-dependent solutions of Gray-Scott model while changing f and k . 

 

   3-D cases have been also simulated by 3-D Gray-Scott model. Following two figures show 

the time-dependent results at a different time with a same initial and boundary conditions 

representing a chaotic behavior. 3-D Fortran program for heat conduction was modified for this 

problem. 
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Fig. 5.7 Time-dependent solutions at a different time for 3-D Gray-Scott model.  

 

 

6. Concluding Remarks 

 The basis of mathematical modeling based on partial differential equations and the 

computational method using the finite-difference method were first explained in this lecture 

note. Next several typical mathematical models formed by reaction equations or 

reaction-diffusion equations were briefly introduced to assist for understanding how to make a 

mathematical model. I believe that everybody who understands this lecture can make their own 

mathematical models soon hereafter. 
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